- ²A POU, or "point-of-use" technology is a treatment device installed at a single tap used for the purpose of reducing contaminants in drinking water at that one tap. POU devices are typically installed at the kitchen tap. See the April 21, 2000 NODA for more details.

- Limitations Footnotes: Technologies for Radionuclides:

 a The regeneration solution contains high concentrations of the contaminant ions. Disposal options should be carefully considered before choosing this technology.

 b When POU devices are used for compliance, programs for long-term operation, maintenance, and monitoring must be provided by water utility to ensure proper performance.

 c Reject water disposal options should be carefully considered before choosing this technology. See other RO limitations described in the SWTR Compliance Technologies Table.

 d The combination of variable source water quality and the complexity of the water chemistry involved may make this technology too complex for small surface water systems.

 Removal efficiencies can vary depending on water quality.
- ^o Removal efficiencies can vary depending on water quality.

 ^fThis technology may be very limited in application to small systems. Since the process requires static mixing, detention basins, and filtration, it is most applicable to systems with sufficiently high sulfate levels that already have a suitable filtration treatment train in place.

 ^gThis tophology is most conficult to a method of the conficult to a met
- ⁹This technology is most applicable to small systems that already have filtration in place.

 ^hHandling of chemicals required during regeneration and pH adjustment may be too difficult for small systems without an adeuately trained operator. quately trained operator.

 i Assumes modification to a coagulation/filtration process already in place.

TABLE D—COMPLIANCE TECHNOLOGIES BY SYSTEM SIZE CATEGORY FOR RADIONUCLIDE NPDWR'S

Contaminant		for system size categories on served)	3,300–10,000	
	25–500	501–3,300		
Combined radium-226 and radium-228 Gross alpha particle activity Beta particle activity and photon activity Uranium	1, 2, 3, 4	1, 2, 3, 4	1, 2, 3, 4.	

NOTE: 1 Numbers correspond to those technologies found listed in the table C of 141.66(h).

[65 FR 76748, Dec. 7, 2000]

Subpart H—Filtration and Disinfection

SOURCE: 54 FR 27527, June 29, 1989, unless otherwise noted.

§141.70 General requirements.

(a) The requirements of this subpart H constitute national primary drinking water regulations. These regulations establish criteria under which filtration is required as a treatment technique for public water systems supplied by a surface water source and public water systems supplied by a ground water source under the direct influence of surface water. In addition, these regulations establish treatment technique requirements in lieu of maximum contaminant levels for the following contaminants: Giardia lamblia, viruses, heterotrophic plate count bacteria, Legionella, and turbidity. Each public water system with a surface water source or a ground water source under the direct influence of surface water must provide treatment of that source water that complies with these treatment technique requirements. The treatment technique requirements consist of installing and properly operating water treatment processes which reliably achieve:

- (1) At least 99.9 percent (3-log) removal and/or inactivation of Giardia lamblia cysts between a point where the raw water is not subject to recontamination by surface water runoff and a point downstream before or at the first customer; and
- (2) At least 99.99 percent (4-log) removal and/or inactivation of viruses between a point where the raw water is not subject to recontamination by surface water runoff and a point downstream before or at the first customer.
- (b) A public water system using a surface water source or a ground water source under the direct influence of surface water is considered to be in compliance with the requirements of paragraph (a) of this section if:
- (1) It meets the requirements for avoiding filtration in §141.71 and the disinfection requirements in §141.72(a);
- (2) It meets the filtration requirements in §141.73 and the disinfection requirements in §141.72(b).
- (c) Each public water system using a surface water source or a ground water source under the direct influence of

surface water must be operated by qualified personnel who meet the requirements specified by the State.

- (d) Additional requirements for systems serving at least 10,000 people. In addition to complying with requirements in this subpart, systems serving at least 10,000 people must also comply with the requirements in subpart P of this part.
- (e) Additional requirements for systems serving fewer than 10,000 people. In addition to complying with requirements in this subpart, systems serving fewer than 10,000 people must also comply with the requirements in subpart T of this part.

[54 FR 27527, June 29, 1989, as amended at 63 FR 69516, Dec. 16, 1998; 67 FR 1836, Jan. 14, 2002]

§ 141.71 Criteria for avoiding filtration.

A public water system that uses a surface water source must meet all of the conditions of paragraphs (a) and (b) of this section, and is subject to paragraph (c) of this section, beginning December 30, 1991, unless the State has determined, in writing pursuant to §1412(b)(7)(C)(iii), that filtration is required. A public water system that uses a ground water source under the direct influence of surface water must meet all of the conditions of paragraphs (a) and (b) of this section and is subject to paragraph (c) of this section, beginning 18 months after the State determines that it is under the direct influence of surface water, or December 30, 1991, whichever is later, unless the State has determined, in writing pursuant to \$1412(b)(7)(C)(iii), that filtration is required. If the State determines in writing pursuant to $\S1412(b)(7)(C)(iii)$ before December 30, 1991, that filtration is required, the system must have installed filtration and meet the criteria for filtered systems specified in §§ 141.72(b) and 141.73 by June 29, 1993. Within 18 months of the failure of a system using surface water or a ground water source under the direct influence of surface water to meet any one of the requirements of paragraphs (a) and (b) of this section or after June 29, 1993, whichever is later, the system must have installed filtration and meet the criteria for filtered systems specified in §§ 141.72(b) and 141.73.

- (a) Source water quality conditions. (1) The fecal coliform concentration must be equal to or less than 20/100 ml, or the total coliform concentration must be equal to or less than 100/100 ml (measured as specified in §141.74 (a) (1) and (2) and (b)(1)), in representative samples of the source water immediately prior to the first or only point of disinfectant application in at least 90 percent of the measurements made for the 6 previous months that the system served water to the public on an ongoing basis. If a system measures both fecal and total coliforms, the fecal coliform criterion, but not the total coliform criterion, in this paragraph must be met.
- (2) The turbidity level cannot exceed 5 NTU (measured as specified in §141.74 (a)(1) and (b)(2)) in representative samples of the source water immediately prior to the first or only point of disinfectant application unless: (i) the State determines that any such event was caused by circumstances that were unusual and unpredictable; and (ii) as a result of any such event, there have not been more than two events in the past 12 months the system served water to the public, or more than five events in the past 120 months the system served water to the public, in which the turbidity level exceeded 5 NTU. An "event" is a series of consecutive days during which at least one turbidity measurement each day exceeds 5 NTU.
- (b) Site-specific conditions. (1)(i) The public water system must meet the requirements of §141.72(a)(1) at least 11 of the 12 previous months that the system served water to the public, on an ongoing basis, unless the system fails to meet the requirements during 2 of the 12 previous months that the system served water to the public, and the State determines that at least one of these failures was caused by circumstances that were unusual and unpredictable.
- (ii) The public water system must meet the requirements of §141.72(a)(2) at all times the system serves water to the public.
- (iii) The public water system must meet the requirements of §141.72(a)(3) at all times the system serves water to the public unless the State determines

that any such failure was caused by circumstances that were unusual and unpredictable.

- (iv) The public water system must meet the requirements of §141.72(a)(4) on an ongoing basis unless the State determines that failure to meet these requirements was not caused by a deficiency in treatment of the source water.
- (2) The public water system must maintain a watershed control program which minimizes the potential for contamination by Giardia lamblia cysts and viruses in the source water. The State must determine whether the watershed control program is adequate to meet this goal. The adequacy of a program to limit potential contamination by Giardia lamblia cysts and viruses must be based on: the comprehensiveness of the watershed review; the effectiveness of the system's program to monitor and control detrimental activities occurring in the watershed; and the extent to which the water system has maximized land ownership and/or controlled land use within the watershed. At a minimum, the watershed control program must:
- (i) Characterize the watershed hydrology and land ownership;
- (ii) Identify watershed characteristics and activities which may have an adverse effect on source water quality; and
- (iii) Monitor the occurrence of activities which may have an adverse effect on source water quality.

The public water system must demonstrate through ownership and/or written agreements with landowners within the watershed that it can control all human activities which may have an adverse impact on the microbiological quality of the source water. The public water system must submit an annual report to the State that identifies any special concerns about the watershed and how they are being handled; describes activities in the watershed that affect water quality; and projects what adverse activities are expected to occur in the future and describes how the public water system expects to address them. For systems using a ground water source under the direct influence of surface water, an approved wellhead protection program

developed under section 1428 of the Safe Drinking Water Act may be used, if the State deems it appropriate, to meet these requirements.

- (3) The public water system must be subject to an annual on-site inspection to assess the watershed control program and disinfection treatment process. Either the State or a party approved by the State must conduct the on-site inspection. The inspection must be conducted by competent individuals such as sanitary and civil engineers, sanitarians, or technicians who have experience and knowledge about the operation and maintenance of a public water system, and who have a sound understanding of public health principles and waterborne diseases. A report of the on-site inspection summarizing all findings must be prepared every year. The on-site inspection must indicate to the State's satisfaction that the watershed control program and disinfection treatment process are adequately designed and maintained. The on-site inspection must include:
- (i) A review of the effectiveness of the watershed control program;
- (ii) A review of the physical condition of the source intake and how well it is protected;
- (iii) A review of the system's equipment maintenance program to ensure there is low probability for failure of the disinfection process;
- (iv) An inspection of the disinfection equipment for physical deterioration;
- (v) A review of operating procedures;
- (vi) A review of data records to ensure that all required tests are being conducted and recorded and disinfection is effectively practiced; and
- (vii) Identification of any improvements which are needed in the equipment, system maintenance and operation, or data collection.
- (4) The public water system must not have been identified as a source of a waterborne disease outbreak, or if it has been so identified, the system must have been modified sufficiently to prevent another such occurrence, as determined by the State.
- (5) The public water system must comply with the maximum contaminant level (MCL) for total coliforms in

§141.63 at least 11 months of the 12 previous months that the system served water to the public, on an ongoing basis, unless the State determines that failure to meet this requirement was not caused by a deficiency in treatment of the source water.

- (6) The public water system must comply with the requirements for trihalomethanes in §§141.12 and 141.30 until December 31, 2001. After December 31, 2001, the system must comply with the requirements for total trihalomethanes, haloacetic acids (five), bromate, chlorite, chlorine, chloramines, and chlorine dioxide in subpart L of this part.
- (c) Treatment technique violations. (1) A system that (i) fails to meet any one of the criteria in paragraphs (a) and (b) of this section and/or which the State has determined that filtration is required, in writing pursuant to §1412(b)(7)(C)(iii), and (ii) fails to install filtration by the date specified in the introductory paragraph of this section is in violation of a treatment technique requirement.
- (2) A system that has not installed filtration is in violation of a treatment technique requirement if:
- (i) The turbidity level (measured as specified in §141.74(a)(1) and (b)(2)) in a representative sample of the source water immediately prior to the first or only point of disinfection application exceeds 5 NTU: or
- (ii) The system is identified as a source of a waterborne disease outbreak.

[54 FR 27527, June 29, 1989, as amended at 63 FR 69516, Dec. 16, 1998; 66 FR 3776, Jan. 16, 2001; 69 FR 38855, June 29, 2004]

§ 141.72 Disinfection.

A public water system that uses a surface water source and does not provide filtration treatment must provide the disinfection treatment specified in paragraph (a) of this section beginning December 30, 1991, unless the State determines that filtration is required in writing pursuant to §1412 (b)(7)(C)(iii). A public water system that uses a ground water source under the direct influence of surface water and does not provide filtration treatment must provide disinfection treatment specified in paragraph (a) of this section beginning

December 30, 1991, or 18 months after the State determines that the ground water source is under the influence of surface water, whichever is later, unless the State has determined that filtration is required in writing pursuant to §1412(b)(7)(C)(iii). If the State has determined that filtration is required, the system must comply with any interim disinfection requirements the State deems necessary before filtration is installed. A system that uses a surface water source that provides filtration treatment must provide the disinfection treatment specified in paragraph (b) of this section beginning June 29, 1993, or beginning when filtration is installed, whichever is later. A system that uses a ground water source under the direct influence of surface water and provides filtration treatment must provide disinfection treatment as specified in paragraph (b) of this section by June 29, 1993, or beginning when filtration is installed, whichever is later. Failure to meet any requirement of this section after the applicable date specified in this introductory paragraph is a treatment technique violation.

- (a) Disinfection requirements for public water systems that do not provide filtration. Each public water system that does not provide filtration treatment must provide disinfection treatment as follows:
- (1) The disinfection treatment must be sufficient to ensure at least 99.9 percent (3-log) inactivation of Giardia lamblia cysts and 99.99 percent (4-log) inactivation of viruses, every day the system serves water to the public, except any one day each month. Each day a system serves water to the public. the public water system must calculate the CT value(s) from the system's treatment parameters, using the procedure specified in §141.74(b)(3), and determine whether this value(s) is sufficient to achieve the specified inactivation rates for Giardia lamblia cysts and viruses. If a system uses a disinfectant other than chlorine, the system may demonstrate to the State, through the use of a State-approved protocol for onsite disinfection challenge studies or other information satisfactory to the State, that CT99.9 values other than those specified in tables 2.1 and 3.1 in

§141.74(b)(3) or other operational parameters are adequate to demonstrate that the system is achieving minimum inactivation rates required by paragraph (a)(1) of this section.

- (2) The disinfection system must have either (i) redundant components, including an auxiliary power supply with automatic start-up and alarm to ensure that disinfectant application is maintained continuously while water is being delivered to the distribution system, or (ii) automatic shut-off of delivery of water to the distribution system whenever there is less than 0.2 mg/ l of residual disinfectant concentration in the water. If the State determines that automatic shut-off would cause unreasonable risk to health or interfere with fire protection, the system must comply with paragraph (a)(2)(i) of this section.
- (3) The residual disinfectant concentration in the water entering the distribution system, measured as specified in §141.74 (a)(2) and (b)(5), cannot be less than 0.2 mg/l for more than 4 hours.

(4)(i) The residual disinfectant concentration in the distribution system, measured as total chlorine, combined chlorine, or chlorine dioxide, as specified in §141.74 (a)(2) and (b)(6), cannot be undetectable in more than 5 percent of the samples each month, for any two consecutive months that the system serves water to the public. Water in the system heterotrophic bacteria concentration less than or equal to 500/ml, measured as heterotrophic plate count (HPC) as specified in §141.74(a)(1), is deemed to have a detectable disinfectant residual for purposes of determining compliance with this requirement. Thus, the value "V" in the following formula cannot exceed 5 percent in one month, for any two consecutive months.

$$V = \frac{c + d + e}{a + b} \times 100$$

where:

a=number of instances where the residual disinfectant concentration is measured;

b=number of instances where the residual disinfectant concentration is not measured but heterotrophic bacteria plate count (HPC) is measured; c=number of instances where the residual disinfectant concentration is measured but not detected and no HPC is measured;

d=number of instances where the residual disinfectant concentration is measured but not detected and where the HPC is >500/ml; and

e=number of instances where the residual disinfectant concentration is not measured and HPC is >500/ml.

- (ii) If the State determines, based on site-specific considerations, that a system has no means for having a sample transported and analyzed for HPC by a certified laboratory under the requisite time and temperature conditions specified by §141.74(a)(1) and that the system is providing adequate disinfection in the distribution system, the requirements of paragraph (a)(4)(i) of this section do not apply to that system.
- (b) Disinfection requirements for public water systems which provide filtration. Each public water system that provides filtration treatment must provide disinfection treatment as follows.
- (1) The disinfection treatment must be sufficient to ensure that the total treatment processes of that system achieve at least 99.9 percent (3-log) inactivation and/or removal of *Giardia lamblia* cysts and at least 99.99 percent (4-log) inactivation and/or removal of viruses, as determined by the State.
- (2) The residual disinfectant concentration in the water entering the distribution system, measured as specified in §141.74 (a)(2) and (c)(2), cannot be less than 0.2 mg/l for more than 4 hours.
- (3)(i) The residual disinfectant concentration in the distribution system, measured as total chlorine, combined chlorine, or chlorine dioxide, as specified in §141.74 (a)(2) and (c)(3), cannot be undetectable in more than 5 percent of the samples each month, for any two consecutive months that the system serves water to the public. Water in the distribution system with a heterotrophic bacteria concentration less than or equal to 500/ml, measured as heterotrophic plate count (HPC) as specified in §141.74(a)(1), is deemed to have a detectable disinfectant residual for purposes of determining compliance with this requirement. Thus, the value "V" in the following formula cannot exceed 5 percent in one month, for any two consecutive months.

$$V = \frac{c+d+e}{a+b} \times 100$$

where:

a=number of instances where the residual disinfectant concentration is measured;

b=number of instances where the residual disinfectant concentration is not measured but heterotrophic bacteria plate count (HPC) is measured;

c=number of instances where the residual disinfectant concentration is measured but not detected and no HPC is measured:

d=number of instances where no residual disinfectant concentration is detected and where the HPC is >500/ml; and

e=number of instances where the residual disinfectant concentration is not measured and HPC is >500/ml.

(ii) If the State determines, based on site-specific considerations, that a system has no means for having a sample transported and analyzed for HPC by a certified laboratory under the requisite time and temperature conditions specified in §141.74(a)(1) and that the system is providing adequate disinfection in the distribution system, the requirements of paragraph (b)(3)(i) of this section do not apply.

[54 FR 27527, June 29, 1989, as amended at 69 FR 38855, June 29, 2004]

§141.73 Filtration.

A public water system that uses a surface water source or a ground water source under the direct influence of surface water, and does not meet all of the criteria in §141.71 (a) and (b) for avoiding filtration, must provide treatment consisting of both disinfection, as specified in §141.72(b), and filtration treatment which complies with the requirements of paragraph (a), (b), (c), (d), or (e) of this section by June 29, 1993, or within 18 months of the failure to meet any one of the criteria for avoiding filtration in §141.71 (a) and (b), whichever is later. Failure to meet any requirement of this section after the date specified in this introductory paragraph is a treatment technique

(a) Conventional filtration treatment or direct filtration. (1) For systems using conventional filtration or direct filtration, the turbidity level of representative samples of a system's filtered water must be less than or equal to 0.5

NTU in at least 95 percent of the measurements taken each month, measured as specified in §141.74 (a)(1) and (c)(1), except that if the State determines that the system is capable of achieving at least 99.9 percent removal and/or inactivation of Giardia lamblia cysts at some turbidity level higher than 0.5 NTU in at least 95 percent of the measurements taken each month, the State may substitute this higher turbidity limit for that system. However, in no case may the State approve a turbidity limit that allows more than 1 NTU in more than 5 percent of the samples taken each month, measured as specified in §141.74 (a)(1) and (c)(1).

- (2) The turbidity level of representative samples of a system's filtered water must at no time exceed 5 NTU, measured as specified in §141.74 (a)(1) and (c)(1).
- (3) Beginning January 1, 2002, systems serving at least 10,000 people must meet the turbidity requirements in §141.173(a).
- (4) Beginning January 1, 2005, systems serving fewer than 10,000 people must meet the turbidity requirements in §§ 141.550 through 141.553.
- (b) Slow sand filtration. (1) For systems using slow sand filtration, the turbidity level of representative samples of a system's filtered water must be less than or equal to 1 NTU in at least 95 percent of the measurements taken each month, measured as specified in §141.74 (a)(1) and (c)(1), except that if the State determines there is no significant interference with disinfection at a higher turbidity level, the State may substitute this higher turbidity limit for that system.
- (2) The turbidity level of representative samples of a system's filtered water must at no time exceed 5 NTU, measured as specified in §141.74 (a)(1) and (c)(1).
- (c) Diatomaceous earth filtration. (1) For systems using diatomaceous earth filtration, the turbidity level of representative samples of a system's filtered water must be less than or equal to 1 NTU in at least 95 percent of the measurements taken each month, measured as specified in §141.74 (a)(1) and (c)(1).
- (2) The turbidity level of representative samples of a system's filtered

water must at no time exceed 5 NTU, measured as specified in §141.74 (a)(1) and (c)(1).

(d) Other filtration technologies. A public water system may use a filtration technology not listed in paragraphs (a) through (c) of this section if it demonstrates to the State, using pilot plant studies or other means, that the alternative filtration technology, in combination with disinfection treatment that meets the requirements of \$141.72(b), consistently achieves 99.9 percent removal and/or inactivation of Giardia lamblia cysts and 99.99 percent removal and/or inactivation of viruses. For a system that makes this demonstration, the requirements of paragraph (b) of this section apply. Beginning January 1, 2002, systems serving at least 10,000 people must meet the requirements for other filtration technologies in §141.173(b). Beginning January 14, 2005, systems serving fewer than 10,000 people must meet the requirements for other filtration technologies in §141.550 through 141.553.

[54 FR 27527, June 29, 1989, as amended at 63 FR 69516, Dec. 16, 1998; 66 FR 3776, Jan. 16, 2001; 67 FR 1836, Jan. 14, 2002; 69 FR 38855, June 29, 2004]

§ 141.74 Analytical and monitoring requirements.

(a) Analytical requirements. Only the analytical method(s) specified in this paragraph, or otherwise approved by EPA, may be used to demonstrate compliance with §§141.71, 141.72 and 141.73. Measurements for pH, turbidity, temperature and residual disinfectant concentrations must be conducted by a person approved by the State. Measurement for total coliforms, fecal coliforms and HPC must be conducted by a laboratory certified by the State or EPA to do such analysis. Until laboratory certification criteria are developed for the analysis of fecal coliforms and HPC, any laboratory certified for total coliforms analysis by the State or EPA is deemed certified for fecal coliforms and HPC analysis. The following procedures shall be conducted in accordance with the publications listed in the following section. This incorporation by reference was approved by the Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1

CFR part 51. Copies of the methods published in Standard Methods for the Examination of Water and Wastewater may be obtained from the American Public Health Association et al., 1015 Fifteenth Street, NW., Washington, DC 20005; copies of the Minimal Medium ONPG-MUG Method as set forth in the article "National Field Evaluation of a Defined Substrate Method for the Simultaneous Enumeration of Total Coliforms and Esherichia coli from Drinking Water: Comparison with the Standard Multiple Tube Fermentation Method" (Edberg et al.), Applied and Environmental Microbiology, Volume 54, pp. 1595-1601, June 1988 (as amended under Erratum, Applied and Environmental Microbiology, Volume 54, p. 3197, December, 1988), may be obtained from the American Water Works Association Research Foundation, 6666 West Quincy Avenue, Denver, Colorado, 80235; and copies of the Indigo Method as set forth in the article "Determination of Ozone in Water by the Indigo Method" (Bader and Hoigne), may be obtained from Science & Engineering, Ozone Pergamon Press Ltd., Fairview Park, Elmsford, New York 10523. Copies may be inspected at the U.S. Environmental Protection Agency, Room EB15, 401 M St., SW., Washington, DC 20460 or at the National Archives and Records Administration (NARA). For information on the availability of this material at NARA, call 202-741-6030, or go to: http:// www.archives.gov/federal register/ code_of_federal_regulations/ ibr locations.html.

(1) Public water systems must conduct analysis of pH and temperature in accordance with one of the methods listed at §141.23(k)(1). Public water systems must conduct analysis of total coliforms, fecal coliforms, heterotrophic bacteria, and turbidity in accordance with one of the following analytical methods or one of the alternative methods listed in appendix A to subpart C of this part and by using analytical test procedures contained in Technical Notes on Drinking Water Methods, EPA-600/R-94-173, October 1994. This document is available from the National Service Center for Environmental Publications (NSCEP), P.O. Box 42419, Cincinnati, OH 45242-0419 or http://www.epa.gov/nscep/.

Organism	Methodology	Citation 1
Total Coliform ²	Total Coliform Fermentation Technique 3,4,5.	9221 A, B, C
	Total Coliform Membrane Filter Technique 6.	9222 A, B, C
	ONPG-MUG Test ⁷	9223
Fecal Coliforms ²	Fecal Coliform Procedure 8.	9221 E
	Fecal Coliform Fil- ter Procedure.	9222 D
Heterotrophic bac- teria ² .	Pour Plate Method	9215 B
	SimPlate 11.	
Turbidity 13	Nephelometric Method.	2130 B
	Nephelometric Method.	180.19
	Great Lakes Instruments.	Method 2 ¹⁰
	Hach FilterTrak	10133 12

The procedures shall be done in accordance with the documents listed below. The incorporation by reference of the following documents listed in footnotes 1, 6, 7 and 9–12 was approved by the Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies of the documents may be obtained from the sources listed below. Information regarding obtaining these documents can be obtained from the Safe Drinking Water Hotline at 800–426–4791. Documents may be inspected at EPA's Drinking Water Docket, 1301 Constitution Avenue, NW., EPA West, Room B102, Washington DC 20460 (Telephone: 202–566–2426); or at the National Archives and Records Administration (NARA). For information on the availability of this material at NARA, call 202–741–6030, or go to: http://www.archives.gov/federal_register/code_of_federal_regulations/ 202–741–6030, or go to: http://www.federal_register/code_of_federal_regulations/ibr_locations.html.

ibr_locations.html.

1 Except where noted, all methods refer to Standard Methods.

1 Except where noted, all methods refer to Standard Methods. ods for the Examination of Water and Wastewater, 18th edition (1992), 19th edition (1995), or 20th edition (1998), American Public Health Association, 1015 Fifteenth Street, NW., Washington, DC 20005. The cited methods published in any of these three editions may be used. In addition, the following online versions may also be used. In addition, the following online versions may also be used: 2130 B-01, 9215 B-00, 9221 A, B, C, E-99, 9222 A, B, C, D-97, and 9223 B-97. Standard Methods Online are available at https://www.standardmethods.org. The year in which each method was approved by the Standard Methods Committee is described to the standard methods. ignated by the last two digits in the method number. The methods listed are the only Online versions that may be used.

²The time from sample collection to initiation of analysis may not exceed 8 hours. Systems must hold samples below 10 deg. C during transit.

³Lactose broth, as commercially available, may be used in lieu of lauryl tryptose broth, if the system conducts at least 25 parallel tests between this medium and lauryl tryptose broth using the water normally tested, and this comparison demonstrates that the false-positive rate and false-negative rate for total coliform, using lactose broth, is less than 10 percent.

Media should cover inverted tubes at least one-half to twothirds after the sample is added.

⁵No requirement exists to run the completed phase on 10 percent of all total coliform-positive confirmed tubes.

⁶ MI agar also may be used. Preparation and use of MI agar is set forth in the article, "New medium for the simultaneous detection of total coliform and *Escherichia coli* in water" by Brenner, K.P., et. al., 1993, Appl. Environ. Microbiol. 59:3534–3544. Also available from the Office of Water Resource Center (RC–4100T), 1200 Pennsylvania Avenue, NW., Washington DC 20460, EPA/600/J–99/225. Verification of colonies is not required.

⁷ The ONPG-MUG Test is also known as the Autoanalysis Collient System.

Colliert System.

⁸ A-1 broth may be held up to 7 days in a tightly closed screw cap tube at 4 °C.

⁹ "Methods for the Determination of longanic Substances in

"wetnous tor the Determination of inorganic Substances in Environmental Samples", EPA/600/R–93/100, August 1993. Available at NTIS, PB94–121811.

1º GLI Method 2, "Turbidity," November 2, 1992, Great Lakes Instruments, Inc., 8855 North 55th Street, Milwaukee,

WI 53/223.

11 A description of the SimPlate method, "IDEXX SimPlate TM HPC Test Method for Heterotrophs in Water," November 2000, can be obtained from IDEXX Laboratories, Inc., 1 IDEXX Drive, Westbrook, ME 04092, telephone (800) 321–

0207.

1º2 A description of the Hach FilterTrak Method 10133, "Determination of Turbidity by Laser Nephelometry," January 2000, Revision 2.0, can be obtained from; Hach Co., P.O. Box 389, Loveland, CO 80539–0389, telephone: 800–227–

4224.

¹³ Styrene divinyl benzene beads (e.g., AMCO-AEPA-1 or equivalent) and stabilized formazin (e.g., Hach StabiCal™ or equivalent) are acceptable substitutes for formazin.

(2) Public water systems must measure residual disinfectant concentrations with one of the analytical methods in the following table or one of the alternative methods listed in appendix A to subpart C of this part. If approved by the State, residual disinfectant concentrations for free chlorine and combined chlorine also may be measured by using DPD colorimetric test kits. In addition States may approve the use of the ITS free chlorine test strip for the determination of free chlorine. Use of the test strips is described in Method D99-003, "Free Chlorine Species (HOC1and OCl-) by Test Strip," Revision 3.0, November 21, 2003, available from Industrial Test Systems, Inc., 1875 Langston St., Rock Hill, SC 29730. Free and total chlorine residuals may be measured continuously by adapting a specified chlorine residual method for use with a continuous monitoring instrument provided the chemistry, accuracy, and precision remain the same. Instruments used for continuous monitoring must be calibrated with a grab sample measurement at least every five days, or with a protocol approved by the State.

Residual	Methodology	SM1	SM Online ²	Other
Free Chlorine	Amperometric Titration	4500–CI D	4500-Cl D-00	D1253-033
	DPD Ferrous Titrimetric	4500-CI F	4500-CI F-00.	
	DPD Colorimetric	4500-CI G	4500-CI G-00.	
	Syringaldazine (FACTS)	4500-CI H	4500-CI H-00.	
Total Chlorine	Amperometric Titration	4500-CI D	4500-CI D-00	D1253-033
	Amperometric Titration (low level measurement)	4500-CI E	4500-CI E-00.	
	DPD Ferrous Titrimetric	4500-CI F	4500-CI F-00.	
	DPD Colorimetric	4500–CI G	4500-CI G-00.	
	lodometric Electrode	4500-CI I	4500-CI I-00.	
Chlorine Dioxide	Amperometric Titration	4500-CIO ₂ C	4500-CIO ₂ C-00.	
	DPD Method	4500-CIO ₂ D.		
	Amperometric Titration	4500-CIO ₂ E	4500-CIO ₂ E-00.	
	Spectrophotometric			327.0, Revision 1.14
Ozone	Dzone Indigo Method 4500-O ₃ B	4500–O ₃ B	4500-O ₃ B-97.	

¹ All the listed methods are contained in the 18th, 19th, and 20th editions of *Standard Methods for the Examination of Water and Wastewater*, 1995, and 1998; the cited methods published in any of these three editions may be used.

² Standard Methods Online are valiable at *Intp://www.standardmethods.org*. The year in which each method was approved by the Standard Methods Committee is designated by the last as the method number. The methods listed are the only Online versions that may be used.

³ *Annual Book of ASTM Standards*. Vol. 11.01, 2004; ASTM International; any year containing the cited version of the method may be used. Copies of this method may be obtained from ASTM International from ASTM international; not Barry ASTM Conforted Conshiborkee, PA 1942-2959.

**EPA Method 327.0, Revision 1.1. "Determination of Chlorine Dioxide and Chlorine lon in Drinking Water Using Lissamine Green B and Horseradish Peroxidase with Detection by Visible Spectrophotometry." USEPA, May 2005, EPA 815-R-05-008. Available online at *http://www.epa.gov/safewater/methods/sourcalt.html*.

- (b) Monitoring requirements for systems that do not provide filtration. A public water system that uses a surface water source and does not provide filtration treatment must begin monitoring, as specified in this paragraph (b), beginning December 31, 1990, unless the State has determined that filtration is required in writing pursuant to 1412(b)(7)(C)(iii), in which case the State may specify alternative monitoring requirements, as appropriate, until filtration is in place. A public water system that uses a ground water source under the direct influence of surface water and does not provide filtration treatment must begin monitoring as specified in this paragraph (b) beginning December 31, 1990, or 6 months after the State determines that the ground water source is under the direct influence of surface water, whichever is later, unless the State has determined that filtration is required pursuant writing §1412(b)(7)(C)(iii), in which case the State may specify alternative monitoring requirements, as appropriate, until filtration is in place.
- (1) Fecal coliform or total coliform density measurements as required by §141.71(a)(1) must be performed on representative source water samples immediately prior to the first or only point of disinfectant application. The system must sample for fecal or total coliforms at the following minimum frequency each week the system serves water to the public:

System size (persons served)	Samples/ week ¹
≤500	1
501 to 3,300	2
3,301 to 10,000	3
10,001 to 25,000	4
>25,000	5

¹ Must be taken on separate days.

Also, one fecal or total coliform density measurement must be made every day the system serves water to the public and the turbidity of the source water exceeds 1 NTU (these samples count towards the weekly coliform sampling requirement) unless the State determines that the system, for logistical reasons outside the system's control, cannot have the sample analyzed within 30 hours of collection.

- (2) Turbidity measurements as required by §141.71(a)(2) must be performed on representative grab samples of source water immediately prior to the first or only point of disinfectant application every four hours (or more frequently) that the system serves water to the public. A public water system may substitute continuous turbidity monitoring for grab sample monitoring if it validates the continuous measurement for accuracy on a regular basis using a protocol approved by the State.
- (3) The total inactivation ratio for each day that the system is in operation must be determined based on the CT_{99.9} values in tables 1.1–1.6, 2.1, and 3.1 of this section, as appropriate. The parameters necessary to determine the total inactivation ratio must be monitored as follows:
- (i) The temperature of the disinfected water must be measured at least once per day at each residual disinfectant concentration sampling point.
- (ii) If the system uses chlorine, the pH of the disinfected water must be measured at least once per day at each chlorine residual disinfectant concentration sampling point.
- (iii) The disinfectant contact time(s) ("T") must be determined for each day during peak hourly flow.
- (iv) The residual disinfectant concentration(s) ("C") of the water before or at the first customer must be measured each day during peak hourly flow.
- (v) If a system uses a disinfectant other than chlorine, the system may demonstrate to the State, through the use of a State-approved protocol for onsite disinfection challenge studies or other information satisfactory to the State, that $CT_{99.9}$ values other than those specified in tables 2.1 and 3.1 in this section other operational parameters are adequate to demonstrate that the system is achieving the minimum inactivation rates required by $\S 141.72(a)(1)$.

Table 1.1—CT Values (CT $_{99.9}$) for 99.9 Percent Inactivation of Giardia Lamblia Cysts by Free Chlorine at 0.5 $^{\circ}$ C or Lower 1

			рН			
≤6.0	6.5	7.0	7.5	8.0	8.5	≤9.0
137	163	195	237	277	329	390
141	168	200	239	286	342	407
145	172	205	246	295	354	422
148	176	210	253	304	365	437
152	180	215	259	313	376	451
155	184	221	266	321	387	464
157	189	226	273	329	397	477
162	193	231	279	338	407	489
165	197	236	286	346	417	500
169	201	242	297	353	426	511
172	205	247	298	361	435	522
175	209	252	304	368	444	533
178	213	257	310	375	452	543
181	217	261	316	382	460	552
	137 141 145 148 152 155 157 162 165 169 172 175 178	137 163 141 168 145 172 148 176 155 184 157 189 162 193 165 197 169 201 172 205 175 209 178 213	137 163 195 141 168 200 145 172 205 148 176 210 152 180 215 155 184 221 157 189 226 162 193 231 165 197 236 169 201 242 172 205 247 175 209 252 178 213 257	≤6.0 6.5 7.0 7.5 137 163 195 237 141 168 200 239 145 172 205 246 148 176 210 253 152 180 215 259 155 184 221 266 157 189 226 273 162 193 231 279 165 197 236 286 169 201 242 297 172 205 247 298 175 209 252 304 178 213 257 310	≤6.0 6.5 7.0 7.5 8.0 137 163 195 237 277 141 168 200 239 286 145 172 205 246 295 148 176 210 253 304 152 180 215 259 313 155 184 221 266 321 157 189 226 273 329 162 193 231 279 338 165 197 236 286 346 169 201 242 297 353 172 205 247 298 361 175 209 252 304 368 178 213 257 310 375	≤6.0 6.5 7.0 7.5 8.0 8.5 137 163 195 237 277 329 141 168 200 239 286 342 145 172 205 246 295 354 148 176 210 253 304 365 152 180 215 259 313 376 157 189 226 273 329 397 162 193 231 279 338 407 165 197 236 286 346 417 169 201 242 297 353 426 172 205 247 298 361 435 175 209 252 304 368 444 178 213 257 310 375 452

¹These CT values achieve greater than a 99.99 percent inactivation of viruses. CT values between the indicated pH values may be determined by linear interpolation. CT values between the indicated temperatures of different tables may be determined by linear interpolation. If no interpolation is used, use the CT_{99.9} value at the lower temperature and at the higher pH.

Table 1.2—CT Values (CT $_{99.9}$) for 99.9 Percent Inactivation of Giardia Lamblia Cysts by Free Chlorine at 5.0 $^{\circ}$ C 1

Free				рН			
resid- ual (mg/l)	≤6.0	6.5	7.0	7.5	8.0	8.5	≤9.0
≤0.4	97	117	139	166	198	236	279
0.6	100	120	143	171	204	244	291
0.8	103	122	146	175	210	252	301
1.0	105	125	149	179	216	260	312
1.2	107	127	152	183	221	267	320
1.4	109	130	155	187	227	274	329
1.6	111	132	158	192	232	281	337
1.8	114	135	162	196	238	287	345
2.0	116	138	165	200	243	294	353
2.2	118	140	169	204	248	300	361
2.4	120	143	172	209	253	306	368
2.6	122	146	175	213	258	312	375
2.8	124	148	178	217	263	318	382
3.0	126	151	182	221	268	324	389

¹These CT values achieve greater than a 99.99 percent inactivation of viruses. CT values between the indicated pH values may be determined by linear interpolation. CT values between the indicated temperatures of different tables may be determined by linear interpolation. If no interpolation is used, use the CT_{99.9} value at the lower temperature, and at the higher pH.

Table 1.3—CT Values (CT $_{99.9}$) for 99.9 Percent Inactivation of Giardia Lamblia Cysts by Free Chlorine at 10.0 $^{\circ}$ C 1

Free resid-				рН			
ual (mg/l)	≤6.0	6.5	7.0	7.5	8.0	8.5	≤9.0
≤0.4	73	88	104	125	149	177	209
0.6	75	90	107	128	153	183	218
0.8	78	92	110	131	158	189	226
1.0	79	94	112	134	162	195	234

TABLE 1.3—CT VALUES (CT 99.9) FOR 99.9 PERCENT INACTIVATION OF GIARDIA LAMBLIA CYSTS BY FREE CHLORINE AT 10.0 °C 1—Continued

Free resid-				рН			
ual (mg/l)	≤6.0	6.5	7.0	7.5	8.0	8.5	≤9.0
1.2	80	95	114	137	166	200	240
1.4	82	98	116	140	170	206	247
1.6	83	99	119	144	174	211	253
1.8	86	101	122	147	179	215	259
2.0	87	104	124	150	182	221	265
2.2	89	105	127	153	186	225	271
2.4	90	107	129	157	190	230	276
2.6	92	110	131	160	194	234	281
2.8	93	111	134	163	197	239	287
3.0	95	113	137	166	201	243	292

¹These CT values achieve greater than a 99.99 percent inactivation of viruses. CT values between the indicated pH values may be determined by linear interpolation. CT values between the indicated temperatures of different tables may be determined by linear interpolation. If no interpolation is used, use the CT_{99,9} value at the lower temperature, and at the higher pH.

Table 1.4—CT Values (CT $_{99.9}$) for 99.9 Percent Inactivation of Giardia Lamblia Cysts by Free Chlorine at 15.0 $^{\circ}$ C 1

Free resid-				рН			
ual (mg/l)	≤6.0	6.5	7.0	7.5	8.0	8.5	≤9.0
≤0.4	49	59	70	83	99	118	140
0.6	50	60	72	86	102	122	146
0.8	52	61	73	88	105	126	151
1.0	53	63	75	90	108	130	156
1.2	54	64	76	92	111	134	160
1.4	55	65	78	94	114	137	165
1.6	56	66	79	96	116	141	169
1.8	57	68	81	98	119	144	173
2.0	58	69	83	100	122	147	177
2.2	59	70	85	102	124	150	181
2.4	60	72	86	105	127	153	184
2.6	61	73	88	107	129	156	188
2.8	62	74	89	109	132	159	191
3.0	63	76	91	111	134	162	195

¹These CT values achieve greater than a 99.99 percent inactivation of viruses. CT values between the indicated pH values may be determined by linear interpolation. CT values between the indicated temperatures of different tables may be determined by linear interpolation. If no interpolation is used, use the CT_{99.9} value at the lower temperature, and at the higher pH.

Table 1.5—CT Values (CT $_{99.9}$) for 99.9 Percent Inactivation of Giardia Lamblia Cysts by Free Chlorine at $20\,^{\circ}\text{C}^{\,1}$

Free resid-				рН			
ual (mg/l)	≤ 6.0	6.5	7.0	7.5	8.0	8.5	≤ 9.0
≤ 0.4	36	44	52	62	74	89	105
0.6	38	45	54	64	77	92	109
0.8	39	46	55	66	79	95	113
1.0	39	47	56	67	81	98	117
1.2	40	48	57	69	83	100	120
1.4	41	49	58	70	85	103	123
1.6	42	50	59	72	87	105	126

Table 1.5—CT Values (CT $_{99.9}$) for 99.9 Percent Inactivation of Giardia Lamblia Cysts by Free Chlorine at 20 $^{\circ}$ C 1 —Continued

Free resid-				pН			-
ual (mg/l)	≤ 6.0	6.5	7.0	7.5	8.0	8.5	≤ 9.0
1.8	43	51	61	74	89	108	129
2.0	44	52	62	75	91	110	132
2.2	44	53	63	77	93	113	135
2.4	45	54	65	78	95	115	138
2.6	46	55	66	80	97	117	141
2.8	47	56	67	81	99	119	143
3.0	47	57	68	83	101	122	146

¹These CT values achieve greater than a 99.99 percent inactivation of viruses. CT values between the indicated pH values may be determined by linear interpolation. CT values between the indicated temperatures of different tables may be determined by linear interpolation. If no interpolation is used, use the CT_{99.9} value at the lower temperature, and at the higher pH.

Table 1.6—CT Values (CT $_{99.9}$) for 99.9 Percent Inactivation of Giardia Lamblia Cysts by Free Chlorine at $25\,^{\circ}\text{C}^{\,1}$ and Higher

Free resid-				рН			
ual (mg/l)	≤ 6.0	6.5	7.0	7.5	8.0	8.5	≤ 9.0
≤ 0.4	24	29	35	42	50	59	70
0.6	25	30	36	43	51	61	73
0.8	26	31	37	44	53	63	75
1.0	26	31	37	45	54	65	78
1.2	27	32	38	46	55	67	80
1.4	27	33	39	47	57	69	82
1.6	28	33	40	48	58	70	84
1.8	29	34	41	49	60	72	86
2.0	29	35	41	50	61	74	88
2.2	30	35	42	51	62	75	90
2.4	30	36	43	52	63	77	92
2.6	31	37	44	53	65	78	94
2.8	31	37	45	54	66	80	96
3.0	32	38	46	55	67	81	97

¹These CT values achieve greater than a 99.99 percent inactivation of viruses. CT values between the indicated pH values may be determined by linear interpolation. CT values between the indicated temperatures of different tables may be determined by linear interpolation. If no interpolation is used, use the CT_{99.9} value at the lower temperature, and at the higher pH.

Table 2.1—CT Values (CT_{99.9}) for 99.9 Percent Inactivation of Giardia Lamblia Cysts by Chlorine Dioxide and Ozone ¹

	Temperature					
	< 1 °C	5 °C	10 °C	15°C	20°C	≥ 25 °C
Chlorine dioxide	63 2.9	26 1.9	23 1.4	19 0.95	15 0.72	11 0.48

 $^{^{1}}$ These CT values achieve greater than 99.99 percent inactivation of viruses. CT values between the indicated temperatures may be determined by linear interpolation. If no interpolation is used, use the CT_{99.9} value at the lower temperature for determining CT_{99.9} values between indicated temperatures.

TABLE 3.1—CT VALUES (CT 99.9) FOR 99.9
PERCENT INACTIVATION OF GIARDIA LAMBLIA
CYSTS BY CHLORAMINES 1

Temperature							
< 1 °C	5 °C	10 °C	15 °C	20 °C	25 °C		
3.800	2.200	1.850	1.500	1.100	750		

¹These values are for pH values of 6 to 9. These CT values may be assumed to achieve greater than 99.99 percent inactivation of viruses only if chlorine is added and mixed in the water prior to the addition of ammonia. If this condition is not met, the system must demonstrate, based on on-site studies or other information, as approved by the State, that the system is achieving at least 99.99 percent inactivation of viruses. CT values between the indicated temperatures may be determined by linear interpolation. If no interpolation is used, use the CT_{99.9} values between indicated temperature for determining CT_{99.9} values between indicated temperatures.

- (4) The total inactivation ratio must be calculated as follows:
- (i) If the system uses only one point of disinfectant application, the system

may determine the total inactivation ratio based on either of the following two methods:

- (A) One inactivation ratio (CTcalc/CT_{99.9}) is determined before or at the first customer during peak hourly flow and if the CTcalc/CT_{99.9} \geq 1.0, the 99.9 percent *Giardia lamblia* inactivation requirement has been achieved; or
- (B) Successive CTcalc/CT_{99.9} values, representing sequential inactivation ratios, are determined between the point of disinfectant application and a point before or at the first customer during peak hourly flow. Under this alternative, the following method must be used to calculate the total inactivation ratio:

- (1) Determine $\frac{\text{CTcalc}}{\text{CT}_{99.9}}$ for each sequence.
- (2) Add the $\frac{\text{CTcalc}}{\text{CT}_{99.9}}$ values together $\left(\sum \frac{(\text{CTcalc})}{\text{CT}_{99.9}}\right)$
- (3) If $\sum \left(\frac{\text{CTcalc}}{\text{CT}_{99.9}}\right) \ge 1.0$, the 99.9 percent *Giardia*

lamblia inactivation requirement has been achieved.

(ii) If the system uses more than one point of disinfectant application before or at the first customer, the system must determine the CT value of each disinfection sequence immediately prior to the next point of disinfectant application during peak hourly flow. The CTcalc/CT_{99.9} value of each sequence and

$$\sum \frac{\text{CTcalc}}{\text{CT}_{99.9}}$$

must be calculated using the method in paragraph (b)(4)(i)(B) of this section to determine if the system is in compliance with §141.72(a).

(iii) Although not required, the total percent inactivation for a system with one or more points of residual disinfectant concentration monitoring may be calculated by solving the following equation:

Percent inactivation =
$$100 - \frac{100}{10^2}$$

where
$$z = 3 \times \sum \left(\frac{\text{CTcalc}}{\text{CT}_{99.9}} \right)$$

(5) The residual disinfectant concentration of the water entering the distribution system must be monitored continuously, and the lowest value must be recorded each day, except that if there is a failure in the continuous monitoring equipment, grab sampling every 4 hours may be conducted in lieu of continuous monitoring, but for no more than 5 working days following the failure of the equipment, and systems serving 3,300 or fewer persons may take grab samples in lieu of providing

continuous monitoring on an ongoing basis at the frequencies prescribed below:

System size by population	Samples/ day 1
<500	1
501 to 1,000	2
1,001 to 2,500	3
2,501 to 3,300	4

¹The day's samples cannot be taken at the same time. The sampling intervals are subject to State review and approval.

If at any time the residual disinfectant concentration falls below 0.2 mg/l in a system using grab sampling in lieu of continuous monitoring, the system must take a grab sample every 4 hours until the residual concentration is equal to or greater than 0.2 mg/l.

(6)(i) The residual disinfectant concentration must be measured at least at the same points in the distribution system and at the same time as total coliforms are sampled, as specified in §141.21, except that the State may allow a public water system which uses both a surface water source or a ground water source under direct influence of surface water, and a ground water source, to take disinfectant residual samples at points other than the total coliform sampling points if the State determines that such points are more representative of treated (disinfected) water quality within the distribution system. Heterotrophic bacteria, measured as heterotrophic plate count (HPC) as specified in paragraph (a)(3) of this section, may be measured in lieu of residual disinfectant concentration.

(ii) If the State determines, based on site-specific considerations, that a system has no means for having a sample transported and analyzed for HPC by a certified laboratory under the requisite

time and temperature conditions specified by paragraph (a)(1) of this section and that the system is providing adequate disinfection in the distribution system, the requirements of paragraph (b)(6)(i) of this section do not apply to that system.

- (c) Monitoring requirements for systems using filtration treatment. A public water system that uses a surface water source or a ground water source under the influence of surface water and provides filtration treatment must monitor in accordance with this paragraph (c) beginning June 29, 1993, or when filtration is installed, whichever is later.
- (1) Turbidity measurements as required by §141.73 must be performed on representative samples of the system's filtered water every four hours (or more frequently) that the system serves water to the public. A public water system may substitute continuous turbidity monitoring for grab sample monitoring if it validates the continuous measurement for accuracy on a regular basis using a protocol approved by the State. For any systems using slow sand filtration or filtration treatment other than conventional treatment, direct filtration, or diatomaceous earth filtration, the State may reduce the sampling frequency to once per day if it determines that less frequent monitoring is sufficient to indicate effective filtration performance. For systems serving 500 or fewer persons, the State may reduce the turbidity sampling frequency to once per day, regardless of the type of filtration treatment used, if the State determines that less frequent monitoring is sufficient to indicate effective filtration performance.
- (2) The residual disinfectant concentration of the water entering the distribution system must be monitored continuously, and the lowest value must be recorded each day, except that if there is a failure in the continuous monitoring equipment, grab sampling every 4 hours may be conducted in lieu of continuous monitoring, but for no more than 5 working days following the failure of the equipment, and systems serving 3,300 or fewer persons may take grab samples in lieu of providing continuous monitoring on an ongoing

basis at the frequencies each day prescribed below:

System size by population	Samples/ day ¹
±500	1
501 to 1,000	2
1,001 to 2,500	3
2,501 to 3,300	4

¹The day's samples cannot be taken at the same time. The sampling intervals are subject to State review and approval.

If at any time the residual disinfectant concentration falls below 0.2 mg/l in a system using grab sampling in lieu of continuous monitoring, the system must take a grab sample every 4 hours until the residual disinfectant concentration is equal to or greater than 0.2 mg/l.

(3)(i) The residual disinfectant concentration must be measured at least at the same points in the distribution system and at the same time as total coliforms are sampled, as specified in §141.21, except that the State may allow a public water system which uses both a surface water source or a ground water source under direct influence of surface water, and a ground water source to take disinfectant residual samples at points other than the total coliform sampling points if the State determines that such points are more representative of treated (disinfected) water quality within the distribution system. Heterotrophic bacteria, measured as heterotrophic plate count (HPC) as specified in paragraph (a)(1) of this section, may be measured in lieu of residual disinfectant concentration.

(ii) If the State determines, based on site-specific considerations, that a system has no means for having a sample transported and analyzed for HPC by a certified laboratory under the requisite time and temperature conditions specified by paragraph (a)(1) of this section and that the system is providing adequate disinfection in the distribution system, the requirements of paragraph (c)(3)(i) of this section do not apply to that system.

[54 FR 27527, June 29, 1989, as amended at 59 FR 62470, Dec. 5, 1994; 60 FR 34086, June 29, 1995; 64 FR 67465, Dec. 1, 1999; 67 FR 65252, Oct. 23, 2002; 67 FR 65901, Oct. 29, 2002; 69 FR 38856, June 29, 2004; 72 FR 11247, Mar. 12, 2007; 74 FR 30958, June 29, 2009]

§ 141.75 Reporting and recordkeeping requirements.

- (a) A public water system that uses a surface water source and does not provide filtration treatment must report monthly to the State the information specified in this paragraph (a) beginning December 31, 1990, unless the State has determined that filtration is required in writing pursuant to section 1412(b)(7)(C)(iii), in which case the State may specify alternative reporting requirements, as appropriate, until filtration is in place. A public water system that uses a ground water source under the direct influence of surface water and does not provide filtration treatment must report monthly to the State the information specified in this paragraph (a) beginning December 31, 1990, or 6 months after the State determines that the ground water source is under the direct influence of surface water, whichever is later, unless the State has determined that filtration is required in writing pursuant to §1412(b)(7)(C)(iii), in which case the State may specify alternative reporting requirements, as appropriate, until filtration is in place.
- (1) Source water quality information must be reported to the State within 10 days after the end of each month the system serves water to the public. Information that must be reported includes:
- (i) The cumulative number of months for which results are reported.
- (ii) The number of fecal and/or total coliform samples, whichever are analyzed during the month (if a system monitors for both, only fecal coliforms must be reported), the dates of sample collection, and the dates when the turbidity level exceeded 1 NTU.
- (iii) The number of samples during the month that had equal to or less than 20/100 ml fecal coliforms and/or equal to or less than 100/100 ml total coliforms, whichever are analyzed.
- (iv) The cumulative number of fecal or total coliform samples, whichever are analyzed, during the previous six months the system served water to the public.
- (v) The cumulative number of samples that had equal to or less than 20/100 ml fecal coliforms or equal to or less than 100/100 ml total coliforms,

- whichever are analyzed, during the previous six months the system served water to the public.
- (vi) The percentage of samples that had equal to or less than 20/100 ml fecal coliforms or equal to or less than 100/100 ml total coliforms, whichever are analyzed, during the previous six months the system served water to the public.
- (vii) The maximum turbidity level measured during the month, the date(s) of occurrence for any measurement(s) which exceeded 5 NTU, and the date(s) the occurrence(s) was reported to the State.
- (viii) For the first 12 months of recordkeeping, the dates and cumulative number of events during which the turbidity exceeded 5 NTU, and after one year of recordkeeping for turbidity measurements, the dates and cumulative number of events during which the turbidity exceeded 5 NTU in the previous 12 months the system served water to the public.
- (ix) For the first 120 months of recordkeeping, the dates and cumulative number of events during which the turbidity exceeded 5 NTU, and after 10 years of recordkeeping for turbidity measurements, the dates and cumulative number of events during which the turbidity exceeded 5 NTU in the previous 120 months the system served water to the public.
- (2) Disinfection information specified in §141.74(b) must be reported to the State within 10 days after the end of each month the system serves water to the public. Information that must be reported includes:
- (i) For each day, the lowest measurement of residual disinfectant concentration in mg/l in water entering the distribution system.
- (ii) The date and duration of each period when the residual disinfectant concentration in water entering the distribution system fell below 0.2 mg/l and when the State was notified of the occurrence.
- (iii) The daily residual disinfectant concentration(s) (in mg/l) and disinfectant contact time(s) (in minutes) used for calculating the CT value(s).
- (iv) If chlorine is used, the daily measurement(s) of pH of disinfected $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) =\frac{1$

water following each point of chlorine disinfection.

- (v) The daily measurement(s) of water temperature in °C following each point of disinfection.
- (vi) The daily CTcalc and CTcalc/CT_{99,9} values for each disinfectant measurement or sequence and the sum of all CTcalc/CT_{99,9} values ((CTcalc/CT_{99,9})) before or at the first customer.
- (vii) The daily determination of whether disinfection achieves adequate *Giardia* cyst and virus inactivation, *i.e.*, whether (CTcalc/CT_{99,9}) is at least 1.0 or, where disinfectants other than chlorine are used, other indicator conditions that the State determines are appropriate, are met.
- (viii) The following information on the samples taken in the distribution system in conjunction with total coliform monitoring pursuant to §141.72:
- (A) Number of instances where the residual disinfectant concentration is measured;
- (B) Number of instances where the residual disinfectant concentration is not measured but heterotrophic bacteria plate count (HPC) is measured:
- (C) Number of instances where the residual disinfectant concentration is measured but not detected and no HPC is measured:
- (D) Number of instances where the residual disinfectant concentration is detected and where HPC is >500/ml;
- (E) Number of instances where the residual disinfectant concentration is not measured and HPC is >500/ml;
- (F) For the current and previous month the system served water to the public, the value of "V" in the following formula:

$$V = \frac{c + d + e}{a + b} \times 100$$

where:

a=the value in paragraph (a)(2)(viii)(A) of this section,

b=the value in paragraph (a)(2)(viii)(B) of this section.

c=the value in paragraph (a)(2)(viii)(C) of this section,

d=the value in paragraph (a)(2)(viii)(D) of this section, and

e=the value in paragraph (a)(2)(viii)(E) of this section.

(G) If the State determines, based on site-specific considerations, that a sys-

tem has no means for having a sample transported and analyzed for HPC by a certified laboratory under the requisite time and temperature conditions specified by §141.74(a)(1) and that the system is providing adequate disinfection in the distribution system, the requirements of paragraph (a)(2)(viii) (A)–(F) of this section do not apply to that system.

- (ix) A system need not report the data listed in paragraphs (a)(2) (i), and (iii)–(vi) of this section if all data listed in paragraphs (a)(2) (i)–(viii) of this section remain on file at the system, and the State determines that:
- (A) The system has submitted to the State all the information required by paragraphs (a)(2) (i)–(viii) of this section for at least 12 months; and
- (B) The State has determined that the system is not required to provide filtration treatment.
- (3) No later than ten days after the end of each Federal fiscal year (September 30), each system must provide to the State a report which summarizes its compliance with all watershed control program requirements specified in §141.71(b)(2).
- (4) No later than ten days after the end of each Federal fiscal year (September 30), each system must provide to the State a report on the on-site inspection conducted during that year pursuant to §141.71(b)(3), unless the onsite inspection was conducted by the State. If the inspection was conducted by the State, the State must provide a copy of its report to the public water system
- (5)(i) Each system, upon discovering that a waterborne disease outbreak potentially attributable to that water system has occurred, must report that occurrence to the State as soon as possible, but no later than by the end of the next business day.
- (ii) If at any time the turbidity exceeds 5 NTU, the system must consult with the primacy agency as soon as practical, but no later than 24 hours after the exceedance is known, in accordance with the public notification requirements under §141.203(b)(3).
- (iii) If at any time the residual falls below 0.2 mg/l in the water entering the distribution system, the system must notify the State as soon as possible,

but no later than by the end of the next business day. The system also must notify the State by the end of the next business day whether or not the residual was restored to at least $0.2~\rm mg/l$ within 4 hours.

- (b) A public water system that uses a surface water source or a ground water source under the direct influence of surface water and provides filtration treatment must report monthly to the State the information specified in this paragraph (b) beginning June 29, 1993, or when filtration is installed, whichever is later.
- (1) Turbidity measurements as required by §141.74(c)(1) must be reported within 10 days after the end of each month the system serves water to the public. Information that must be reported includes:
- (i) The total number of filtered water turbidity measurements taken during the month.
- (ii) The number and percentage of filtered water turbidity measurements taken during the month which are less than or equal to the turbidity limits specified in §141.73 for the filtration technology being used.
- (iii) The date and value of any turbidity measurements taken during the month which exceed 5 NTU.
- (2) Disinfection information specified in §141.74(c) must be reported to the State within 10 days after the end of each month the system serves water to the public. Information that must be reported includes:
- (i) For each day, the lowest measurement of residual disinfectant concentration in mg/l in water entering the distribution system.
- (ii) The date and duration of each period when the residual disinfectant concentration in water entering the distribution system fell below 0.2 mg/l and when the State was notified of the occurrence.
- (iii) The following information on the samples taken in the distribution system in conjunction with total coliform monitoring pursuant to §141.72:
- (A) Number of instances where the residual disinfectant concentration is measured:
- (B) Number of instances where the residual disinfectant concentration is

not measured but heterotrophic bacteria plate count (HPC) is measured;

- (C) Number of instances where the residual disinfectant concentration is measured but not detected and no HPC is measured:
- (D) Number of instances where no residual disinfectant concentration is detected and where HPC is >500/ml;
- (E) Number of instances where the residual disinfectant concentration is not measured and HPC is >500/ml;
- (F) For the current and previous month the system serves water to the public, the value of "V" in the following formula:

$$V = \frac{c + d + e}{a + b} \times 100$$

where:

a=the value in paragraph (b)(2)(iii)(A) of this section,

b=the value in paragraph (b)(2)(iii)(B) of this section,

c=the value in paragraph (b)(2)(iii)(C) of this section,

d=the value in paragraph (b)(2)(iii)(D) of this section, and

e=the value in paragraph (b)(2)(iii)(E) of this section.

- (G) If the State determines, based on site-specific considerations, that a system has no means for having a sample transported and analyzed for HPC by a certified laboratory within the requisite time and temperature conditions specified by \$141.74(a)(1) and that the system is providing adequate disinfection in the distribution system, the requirements of paragraph (b)(2)(iii) (A)–(F) of this section do not apply.
- (iv) A system need not report the data listed in paragraph (b)(2)(i) of this section if all data listed in paragraphs (b)(2) (i)–(iii) of this section remain on file at the system and the State determines that the system has submitted all the information required by paragraphs (b)(2) (i)–(iii) of this section for at least 12 months.
- (3)(i) Each system, upon discovering that a waterborne disease outbreak potentially attributable to that water system has occurred, must report that occurrence to the State as soon as possible, but no later than by the end of the next business day.
- (ii) If at any time the turbidity exceeds 5 NTU, the system must consult

with the primacy agency as soon as practical, but no later than 24 hours after the exceedance is known, in accordance with the public notification requirements under §141.203(b)(3).

(iii) If at any time the residual falls below 0.2 mg/l in the water entering the distribution system, the system must notify the State as soon as possible, but no later than by the end of the next business day. The system also must notify the State by the end of the next business day whether or not the residual was restored to at least 0.2 mg/l within 4 hours.

[54 FR 27527, June 29, 1989, as amended at 65 FR 26022, May 4, 2000; 69 FR 38856, June 29, 2004]

§141.76 Recycle provisions.

- (a) Applicability. All subpart H systems that employ conventional filtration or direct filtration treatment and that recycle spent filter backwash water, thickener supernatant, or liquids from dewatering processes must meet the requirements in paragraphs (b) through (d) of this section.
- (b) Reporting. A system must notify the State in writing by December 8, 2003, if the system recycles spent filter backwash water, thickener supernatant, or liquids from dewatering processes. This notification must include, at a minimum, the information specified in paragraphs (b)(1) and (2) of this section.
- (1) A plant schematic showing the origin of all flows which are recycled (including, but not limited to, spent filter backwash water, thickener supernatant, and liquids from dewatering processes), the hydraulic conveyance used to transport them, and the location where they are re-introduced back into the treatment plant.
- (2) Typical recycle flow in gallons per minute (gpm), the highest observed plant flow experienced in the previous year (gpm), design flow for the treatment plant (gpm), and State-approved operating capacity for the plant where the State has made such determinations
- (c) Treatment technique requirement. Any system that recycles spent filter backwash water, thickener supernatant, or liquids from dewatering processes must return these flows

through the processes of a system's existing conventional or direct filtration system as defined in §141.2 or at an alternate location approved by the State by June 8, 2004. If capital improvements are required to modify the recycle location to meet this requirement, all capital improvements must be completed no later than June 8, 2006.

- (d) Recordkeeping. The system must collect and retain on file recycle flow information specified in paragraphs (d)(1) through (6) of this section for review and evaluation by the State beginning June 8, 2004.
- (1) Copy of the recycle notification and information submitted to the State under paragraph (b) of this section.
- (2) List of all recycle flows and the frequency with which they are returned.
- (3) Average and maximum backwash flow rate through the filters and the average and maximum duration of the filter backwash process in minutes.
- (4) Typical filter run length and a written summary of how filter run length is determined.
- (5) The type of treatment provided for the recycle flow.
- (6) Data on the physical dimensions of the equalization and/or treatment units, typical and maximum hydraulic loading rates, type of treatment chemicals used and average dose and frequency of use, and frequency at which solids are removed, if applicable.

[66 FR 31103, June 8, 2001]

Subpart I—Control of Lead and Copper

SOURCE: 56 FR 26548, June 7, 1991, unless otherwise noted.

§ 141.80 General requirements.

- (a) Applicability and effective dates. (1) The requirements of this subpart I constitute the national primary drinking water regulations for lead and copper. Unless otherwise indicated, each of the provisions of this subpart applies to community water systems and nontransient, non-community water systems (hereinafter referred to as "water systems" or "systems").
- (2) [Reserved]